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Abstract. This article introduces a novel method
for choosing the optimal solution from the Pareto
front generated by the multi-objective harmony search
(MOHS) algorithm, specifically aimed at optimizing an
induction motor. We formulate both single- and multi-
objective optimization problems that minimize active
mass while maximizing efficiency and rated torque.
To effectively identify and manage the Pareto-optimal
front, we utilize non-dominated elitist fast sorting and
crowding distance. Comprehensive simulations using
MATLAB software were conducted on a 18.5 kW, 4-
pole, 50 Hz squirrel-cage induction motor serving as
our test system. Furthermore, in-depth comparisons
were made between our proposed method and estab-
lished approaches like the fuzzy membership approach
and the geometric mean, all vying to select the best so-
lution from the Pareto set generated by the Harmony
search algorithm. This rigorous evaluation highlighted
the superior efficiency and robustness of our method,
demonstrating significant improvements compared to
the motor’s initial values: 0.4377% for rated torque,
0.1766% for efficiency, and a remarkable 7.1048% for
active mass.
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1. Introduction

Induction motors are extensively used in electrical
power industry. There is a growing interest for achiev-
ing optimal designs that enhance their performance
and energy efficiency. Designers strive to improve cru-
cial factors such as starting and rated torque, efficiency,
and power factor, etc [1].

The geometric dimensions of the induction motor,
including stator and rotor slots, as well as core length,
play a vital role in overall performance. Stator slots de-
sign optimization, for example, can enhance efficiency
and reduce harmonic losses [2]. The number of ro-
tor slots influences induction torque performance, and
increasing the axial length of the core can provide a
simple solution for enhancing efficiency [3]. Therefore,
optimizing motor geometry is essential for improving
overall performance.

In recent years, nature-inspired metaheuristic opti-
mization algorithms, such as the Harmony Search (HS)
algorithm, that have gained popularity for optimizing
induction motor designs [4]. The HS algorithm, ini-
tially proposed by Zong Woo Geem et al. in 2001 [5],
has become a preferred choice among heuristic search
algorithms for single-objective problems in various sci-
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entific and technical domains [6]. A notable trend in
research is the application of the HS algorithm to multi-
objective problems, which poses a challenge for the fu-
ture [7]. Previous applications of the HS algorithm
to multi-objective problems, as presented in [8, 9], re-
lied on the weighting method. However, Xu et al. de-
veloped the first multi-objective HS algorithm in [10],
aiming to generate a set of Pareto-optimal front so-
lutions. They successfully applied this algorithm to
a robotic model and obtained a Pareto-optimal front
consisting of five points.

In the context of induction motor design, the multi-
objective nature of the problems introduces multiple
objective functions that often conflict with each other.
Improving one function may lead to the deterioration
of another, making it impossible to find a single solu-
tion that optimizes all functions simultaneously. Con-
sequently, it becomes necessary to identify a set of so-
lutions that meet specific requirements, where each so-
lution in the Pareto-optimal front is not dominated by
other solutions [11].

However, even after obtaining the Pareto-optimal
front, the challenge remains to select the most balanced
solution among the objective functions relative to other
solutions in the Pareto front. This selection process
demands careful evaluation and a deep understanding
of the trade-offs between conflicting objectives. The
aim of this article is to find a solution that represents
the best possible balance among the different objective
functions in the Pareto front, considering the specific
specifications and requirements of the induction motor.
To accomplish this, a mathematical method has been
proposed to identify a more balanced solution among
the objective functions, and it has been compared with
the Fuzzy Membership Approach applied in [12,13] and
the Geometric Median method. This selection step is
crucial to achieve an optimal solution based on problem
priorities and constraints.

The structure of this work is as follows: Section
2. models the geometry of the induction motor and
determines the objective functions. Section 3. pro-
vides an overview of the harmonic search optimization
algorithm used to optimize the selected problem and
explains the proposed method. Section 4. exam-
ines the results obtained using HS optimization and
compares them with conventional designs. The final
section is the conclusion.

2. Design of Induction Motor

This section summarizes the methods used to calcu-
late the three objective functions (active mass, rated
torque, and efficiency) for optimizing the squirrel cage
induction motor. To model and optimize the selected

functions, two steps need to be gone through: The first
step to be done is the conventional design followed ac-
cording to the procedure given in [14] and [15]. Then, a
comparison is made to validate the results obtained by
the conventional design with the required specifications
of the induction motor as shown in Table 1.

Tab. 1: Specifications of the squirrel cage motor by the initial
model and conventional design.

Model T1A 180M-4 Conventional
design

The rated 18.5
output power (KW)

The tension (V) 690
The connections Y

Numbers of phases 3
Frequency (Hz) 50

The rated speed min-1 1460 1459.27
The rated torque (N.m) 121.01 121.07

Efficiency% 90.5 90.57
The power factor 0.86 0.861

The rated current (A) 19.89 19.84
The outer diameter (mm) 279 266.55

The main specifications are presented in Table 1.
They include output power, voltage, connections, num-
ber of phases, and frequency, which are considered in-
puts for conventional design. In addition, the remain-
ing parameters demonstrate that there is an approxi-
mation to the original model, so this shows that the
algorithm used in the conventional design is valid for
use as an optimization problem in the next section.

The second step modeled the main dimensions of the
stator, the stator winding, the main dimensions of the
rotor, and the end rings to make the optimal design.

2.1. Stator geometry

The stator geometry has important parameters for the
design of perfect motors, based on the core outer and
inner diameter and the slot geometry as shown in Fig-
ure 1.

Fig. 1: Cross-section of the stator. (a) stator dimensions, (b)
stator slot dimensions.

As a preliminary step, determine the equivalent core
length represented as the motor’s main dimension.
in [15], the equivalent core length has a relationship
with the main flux distribution, which remains approxi-
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mately constant over a distance from the core and grad-
ually decreases to zero along the machine shaft due to
the effect of the edge field. Thus, the equivalent core
length can be approximated by the following equation:

le = l + 2 ∗ δ, (1)

Where (l) is the active core length, (δ) the air gap
length. The air-gap diameter is the second main di-
mension of the motor and is determined by the follow-
ing equation:

De = χ ∗ le, (2)

Where (χ) the ratio between the equivalent length of
the machine and the diameter of the air gap, it is es-
timated for the asynchronous machine by this relation
χ = π

2∗p
3
√
p, Where (p) the pair number of poles. Thus,

the inner diameter of the stator obtained by this equa-
tion:

Ds = De+ δ. (3)

In Figure 1 part (a) it is shown that the outer diame-
ter of the stator has a relation with the following three
parameters: inner diameter which is already shown in
equation (3), the height of the yoke and the stator slot
height. So, to determine the outer diameter it is nec-
essary to calculate the slot height and the stator yoke
height.

Part (b) of Figure 1 illustrates the type of slot that
is chosen for this article, which is a semi-closed trape-
zoidal slot. The use of semi-closed slots results in low
tooth loss and much quieter operation than with open
slots.

The following equations present the main parameters
of the slot, starting with the slot height of the stator:

hs = h1s + h2s + h+R+ h5s, (4)

where (h1s) the height of the slot opening (h2s) the
height of the wedge, (h and R) the total height of the
stator slot coil, (h5s) the height of the slot inlay. In
addition, the total width of the coil in the slot end of
the stator expressed by the following expression:

b2cs = b1cs +
2 ∗ π ∗ h

Qs
, (5)

where (b1cs) total coil width in stator slot opening, (Qs)
number of stator slots.

The values (Scus), (Scs), (Ss) are designated as the
total area of the stator slot coil, the area of the con-
ductor in the stator slot and the area of the stator slot,

respectively, and are given by,

Ascup =
(b1cs + b2cs)

2
∗ (h− h4s),

Ascd =
π ∗R2

2
+ (b2cs − 2 ∗R) ∗R,

Scus = Ascup +Ascd,

Scs =
Scus ∗ kcus

ZQs

,

(6)

and

b1s = b1cs + 2 ∗ h5s,

b2s = b2cs + 2 ∗ h5s,

Rs = R+ h5s,

Asup = b0s ∗ h1s +
(b0s + b1s)

2
h2s +

(b1s + b1s)

2
h,

Asd =
π ∗R2

s

2
+ (b2s − 2 ∗Rs) ∗Rs,

Ss = Asup +Asd,

(7)

where (b1s) and (b2s) are Width of lower and upper
slots respectively, kcus is the space factor inside the sta-
tor slot insulation and (ZQs) is the number of conduc-
tors per slot. The height of the stator yoke expressed
by the following equation:

hys =
φ̂m

2 ∗ kfe ∗ l ∗ B̂ys

, (8)

where (kfe) is space factor for iron, (B̂ys) is the maxi-
mum flux density at the stator yoke, (φ̂m) is the max-
imum magnetic flux per phase and (N) is the number
of conductors per phase, are denoted by the following
expression respectively:

φ̂m =

√
2 ∗ Em

w ∗ kws ∗N
,

N =
Qs ∗ ZQs

2 ∗ a ∗m
, (9)

where (Em) is the induced EMF of the stator phase
for induction motors, which is (0.93− 0.98)Us, (Us) is
the fundamental terminal voltage, (w) is the angular
velocity of the generated current or voltage, and (kws)
is the winding factor for stator, (m) is the number of
phases and (a) is the number of parallel branches.

So, the outer diameter is defined by the following
equation:

Dse = Ds+ 2 ∗ (hs+ hys. (10)

In [14], the best theoretical diameter ratio (the ratio
of stator inner diameter to outer diameter, Ds/Dse) is
about (0.6 − 0.67), take this range is taken as a con-
straint for optimising the stator inner and outer diam-
eter geometries.
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2.2. Rotor geometry

In the same way, important parameters of the rotor
part are presented, which are based on the size of the
core and slot. Figure 2 illustrates the type of slot and
the different rotor parameters.

Fig. 2: Cross-section of the rotor (a) rotor dimensions, (b) rotor
slot dimensions.

The outer diameter of the rotor is expressed by the
following expression:

Dr = De− δ. (11)

The following equations present the main parameters
of the rotor slot as shown in Figure 2-part b, starting
with the rotor slot height:

hr = h1r +
b1r
2

+ h2r +
b2r
2

, (12)

where (h1r) the opening height of the rotor bar, (b1r
and b2r) the opening width and the end of the rotor
bar, (h2r) the height between opening width and end
of the rotor bar.

Where end width of the rotor bar expressed by the
following expression:

b2r = b1r −
2 ∗ π ∗ h2r

Qr
, (13)

where (Qr) is the rotor bar number.

The values (Salr), (Sr) are designated as the con-
ductor area in the rotor bar and the area of the rotor
slot, respectively, and are given by,Salr =

(b1r − b2r)

2
∗ h2r +

π ∗ b21r
8

+
π ∗ b22r

8
,

Sr = b0r ∗ b1r ∗ Salr.

(14)

The height of the rotor head is expressed by the fol-
lowing equation:

hyr =
φ̂m

2 ∗ kfe ∗ l ∗ B̂yr

, (15)

where (B̂yr) is the maximum flux density at the rotor
yoke.

In Figure 2 part (a) it shows that the inner diameter
of the rotor has a relation with the following three pa-
rameters: rotor outer diameter, the height of the yoke
and the height of the rotor slot. Therefore, it is defined
by the following equation:

Dri = Dr − 2 ∗ (hr + hyr). (16)

2.3. Objective functions

This part shows the relationship with the previous part
that is expressed the objective functions on the effi-
ciency of both the rated torque and the active mass
to improve the IM. Moreover, it is difficult to achieve
a precise evaluation of the performance of the mo-
tor in the real world, so constraints must be made to
avoid electrical or magnetic transgressions. Therefore,
his section presents a detailed description for objective
functions mentioned to optimize IM.

1) Efficiency (η)

The efficiency of a motor is a percentage of energy
transformed from a machine, so the increase in this
percentage represents decrease on the energy losses of
the motor and that’s why there should be a subject
put it as an objective in most optimization study. It
is defined by the ratio of output power to input power,
and is calculated from the total loss of the induction
motor. So, it is defined by the following equation:

η =
Pout

Pin
=

Pout

Pout + Pin
, (17)

where

Ptot = Pfe + Pcus + Palr + Pm + Padd, (18)

where (Pin) is electrical power, (Pout) is mechanical
power, (Pfe) is iron losses, (Pcus) is stator winding
losses, (Palr) is rotor bar losses, (Pm) is mechanical
losses, and (Padd) is additional losses.

• Iron losses
In [16], the losses in the iron are related to the fre-
quency. In the case of low frequency, generally the
losses structure is generated in the teeth and yoke of
the stator and only few in the rotor. The latter can be
neglected due to the low frequency of the rotor. In the
second case at high frequencies, it should be noted that
these losses cannot be neglected as shown in [17]. The
losses in the stator iron are calculated by an analytical
method as was used in [18, 19]. Thus, the stator yoke
losses Pfey, and the stator teeth Pfed, are expressed by
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the following equations:
Pfey = kfe,y ∗ P15 ∗

( f

50Hz

)1.5 ∗ ( B̂y

1.5T

)2 ∗my,

Pfed = kfe,d ∗ P15 ∗
( f

50Hz

)1.5 ∗∑
n

( B̂d,n

1.5T

)2 ∗md,n,

(19)

where P15 is the iron loss factor, k(fe, d), k(fe, y) cor-
rection coefficient of iron losses in the stator teeth and
yoke, estimated by a value 1.8, 1.6 respectively, B̂d,n,
B̂y is the maximum flux density in the stator teeth
and yoke, with md,n, my is the mass of the teeth and
yoke respectively. Figure 3 shows that there are differ-
ent widths in the teeth, since for each width a different
magnetic density is required to calculate all alone and n
are the different parts of the magnetic induction in the
tooth. The laminated steel material used in this article
for the squirrel cage induction motor is M800-50A.

Fig. 3: Induction distribution in a tooth.

The sum of Pfey, and Pfed, gives the total iron losses
Pfe. Now we try to acquire the iron loss resistance Rfe.
We use the following equations:

Pfe = Pfed + Pfey, (20)

Rfe =
m ∗ (Em)2

Pfe
. (21)

• Losses in the stator winding and Losses in
the rotor bar
The Joule losses of the conductor windings in the stator
slots and the Joule losses of the rotor bars are defined
by the following equations:{

Pcus = m ∗Rs ∗ I2s ,
Palr = m ∗R′

r ∗ I ′2r ,
(22)



lav = l + 1.2 ∗
(
π ∗ Ds+ hs

2 ∗ p
∗ y

yQ

)
+ 0.05

Palr = m ∗R′
r ∗ I ′2r ,

Rs =
N ∗ 2 ∗ lav

a ∗ σ(s80o) ∗ Scs)
,

R′
r =

ρ ∗
(
l +

Dring∗m∗Salr

π∗p∗Sr

)
Salr ∗ σr80o

,

(23)

where (yQ, y) are stator pole pitch in slot pitches and
Coil width in slot pitches respectively, (I2s , I ′r) are sta-
tor and rotor currents, (lav) is the average length,
(Dring) is Average diameter of the short-circuit ring,
(ρ) is the factor for referring the rotor compounds to
that of the stator in a squirrel cage induction motor,
this is written as

ρ =
4 ∗m
Qr

∗
(
Kws ∗N
Kwr

)2

. (24)

Equation (23) was used to obtain the copper resis-
tance of the stator and the aluminum resistance of the
rotor of the induction motor. Where (Kwr) is the
winding factor for rotor, (σs80o , σr80o) is the value of
conductivity at an ambient temperature of 80oC we
take this value for the hot resistance. Since the resis-
tance increased with the increase of the temperature
of the stator winding or the rotor bars. we posed that
the temperature is a constant value 80oC, because the
variation of this component requires convoluted calcu-
lations that cannot be included in the electromagnetic
model.

To determine the current in the stator phase, the
equivalent circuit of an induction motor can be used
as [20]. Is is calculated by a simple division of the input
voltage in the phase by the total equivalent impedance;

Is =
V s

Zeq
, (25)

where;

ym =
1

Rfe
− j

1

wLm
,

Zm =
1

ym
,

Zs = Rs+ jwLσs,

Z ′
r =

R′
r

s
+ jwp

(
Lbar +

Lring

2 ∗ sin2
(
πp
Qr

)),
Zeq = Zs +

Z ′
r ∗ Zm

Z ′
r + Zm

,

(26)

Where (s) is slip, (Lσs, Lm) is the stator leakage induc-
tance and the magnetic inductance respectively, both
of which are well detailed in [15,16], (Lbar, Lring) is the
bar leakage inductance and the end ring respectively,
defined and expressed in [19].

Thus, the value of the current in the rotor of the
equivalent circuit transferred to the stator side is;

I ′r =
Em

Z ′r
. (27)

• Mechanical and additional losses
The mechanical losses Pm, are due to the friction of the
rotor bearings and the forced ventilation of the motor
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structure. in [15], the mechanical losses are based on
the synchronous speed ns, the outer rotor diameter Dr

and the degree of protection of the motor (IP 55). It
is defined as follows:

Pm = kρ ∗Dr ∗ (l ∗+0.6 ∗ τp) ∗ (π ∗Dr ∗ ns)2, (28)

where kρ is an experimental factor for small and
medium machines estimated at 15 and τp is the pole
pitch.

Additional losses Padd represents all the remaining
losses like harmonic losses, rotor iron losses, skin effect
losses etc. Most of these losses are neglected but when
they are collected, they have a considerable value e.g.,
in the squirrel cage motor the value of additional losses
0.3-2% per for the input power.

In [16], there is a connection between the additional
losses and the input and output powers, it is defined
by the following equation:

Padd =

(
0.025− 0.005 ∗ log

(
Pout

1kw

))
∗ Pin. (29)

2) Rated torque Tu

The rated torque is the force generated by the rotation
in a motor to drive the loads, so it is an important
element to be put as a second objective function to
improve. In addition, the rated torque is related to
the resistive losses of the rotor and the mechanical loss
that is generated by the reverse torque of the direction
of rotation by friction. So, it can be expressed by the
following equation:

Tu =
Palr

s − Pm

2 ∗ π ∗ ns
. (30)

3) Mass active in the machine Wa

The third objective function is the active mass or mass
of the materials used in the electrical and magnetic
circuit. This component is not less important than the
efficiency and the rated torque, because the increase of
the mass of the active materials causes the efficiency
and the cost of the motor to increase, the same thing if
the mass decreases creating a decrease in the efficiency
and the cost. So, the mass of the active materials is
set as an objective function to take a minimum mass
with optimum efficiency.

The mass of the active materials is divided into three
parts: 1- the mass of the iron cores in the stator and
rotor. 2- the mass of the conductor in the stator. 3-
the mass of the bars and rings in the rotor. So, it can
be expressed by the following equation:

Wa = Wfe +Wcus +Walr. (31)

At the beginning it starts with the iron mass that is
built into the teeth and yokes of the stator and rotor,
which is defined by the following equations:

Wfes = ρfe

(
π ∗ kfe ∗ l ∗ (D2

se −D2
s)

4

− kfe ∗ l ∗ Ss ∗Qs

)
,

Wfer = ρfe

(
π ∗ kfe ∗ l ∗ (D2

r −D2
ri)

4

− kfe ∗ l ∗ Sr ∗Qr

)
.

(32)

The sum of Wfes, and Wfer, gives the total mass of
iron Wfe, so this is defined as:

Wfe = Wfes +Wfer, (33)

where ρfe is the density of the material of the iron.

The total mass of the conductor in the stator is re-
lated to the number of slots, the number of conductors
in the slot, the density of material used as in this study
used copper ρcu and total length for a single conductor.
This mass is expressed by the following equation:

Wcus =
ρcu ∗Qs ∗ ZQs ∗ Scs ∗ 2 ∗ lav

2
. (34)

In the same way, it expresses the mass of the con-
ductor in the rotor which is divided into two parts: the
mass of the bars and the mass of the rings expressed
by the following equation:

Walr = Walbar +Walring, (35)

where
Walbar = ρal ∗Qr ∗ Sals ∗ l,

Walring = ρal ∗ 2 ∗ π ∗Dring ∗
(
Sr ∗

Qr

2 ∗m ∗ p

)
,

(36)

where ρcu , ρal are the material density of the copper
and aluminum respectively.

After expressing the different objective functions se-
lected, the following expression was used to maximize
the three objective functions:

f = max(η, Tu′ −Wa). (37)

2.4. The constraints and variables

To optimize the performance of a motor in the design,
there are several constraints to be taken into account.
In this work, the optimization constraints used for the
induction motor are defined in Table 2.

The design parameters and their limit values have
been given in Table 3 for the induction motor which is
already presented in Table 1.
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Tab. 2: Design constraints.

Magnetic Density in the air gap (T) 0.7 < B̂δ < 0.9

The magnetic density in the stator teeth (T) 1.4 < B̂ds < 2.1

The magnetic density in the rotor teeth (T) 1.5 < B̂dr < 2.2

The current density 3 < Ĵs < 8
in the stator conductors (A/mm2)

The current density 3 < Ĵr < 6.5
in the rotor bars (A/mm2)

The power factor cosϕ > 0.86

The ratio between the inner 0.6 < Ds
Dse

< 0.67

and outer diameter of the stator
Starting torque (N.m) Tst > 99

Tab. 3: Design parameters and limitations.

Design parameter Lower limit Upper limit
ZQs 20 48

l(mm) 145 180
δ(mm) 0.2 2.5
h(mm) 16 26

b1cs(mm) 4 8.5
h2r(mm) 10 22
b1r(mm) 4.5 9
Em(V ) 370.48 386.42
B̂ys(T ) 1.4 2
B̂yr(T ) 1 1.9

3. HS multi-objective
algorithms and the
proposed method

This set of solutions is called the Pareto front. In
this section it has been explained how to find the opti-
mum solution in the Pareto set by using the HS multi-
objective algorithm.

3.1. AN OVERVIEW OF THE
ALGORITHM Research
harmony

The Harmony Search Algorithm (HS) is a heuristic
search algorithm that is inspired by the process of
music creation and the search for harmony in music.
The harmony search algorithm uses a probabilistic ap-
proach to find optimal solutions for a given problem.
It is based on the idea that when a musician plays a
note, he tries to find harmony with the other notes
played by the other musicians. In a similar way, the
harmony search algorithm tries to find harmony be-
tween different possible solutions for a given problem,
selecting those that are the most promising. It is also
often used as an alternative to other heuristic search
algorithms, such as the genetic algorithm and search
Tabou algorithm, as it has many advantages in terms
of simplicity and speed of convergence.

Multi-objective harmony search uses the same prin-
ciple as simple harmony search, but based on several

objectives rather than just one. This means that the
algorithm looks for a solution that simultaneously op-
timizes several objectives, rather than just one. The
detailed description of the optimization procedure of
the HS multi-objective algorithm is given in [21], so
in this section a brief explanation of Multi-Objective
Harmony Search is given in the following steps:

1) Initialization of the parameters of the
HS algorithm

The first step in starting the algorithm is to set the
main parameters of the HS algorithm. These are the
size of the harmony memory (HMS), the harmony con-
sideration rate (HMCR), the pitch adjustment rate
(PAR) and the number of improvisations (NI) it in-
dicates the number of iterations.

2) Initialization of the harmony memory

The second step is the identification of a key element
of the harmony search algorithm which is the harmony
memory. Harmony memory (HM) is a key concept
used in harmony search algorithms, such as the single-
objective or multi-objective harmony search algorithm.
In addition, the harmony memory plays an important
role in the harmony search algorithm, as it stores the
best solutions found so far and uses them as a refer-
ence for the search of new solutions. The HM can be
represented as follows:

HM =


x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

...
...

...
xHMS
1 xHMS

2 . . . xHMS
n

 , (38)

where [xi
1 xi

2 xi
n](i = 1, 2, . . . ,HMS) is the solution

vector.

3) Improvisation of a new harmony from
the HMm

The third step uses the three rules: (1) memory consid-
eration (HMCR), (2) pitch adjustment (PAR) and (3)
random selection, to generate a new harmony vector
x′ = (x′

1, x
′
2, . . . , x

′
n).

The harmony memory consideration rate (HMCR),
determines the probability that an element of the har-
mony memory (x′a solution previously found from
(x1 − xHMS)) is used to generate a new solution in
the next iteration of the algorithm. The more the rate
of consideration of the harmony memory is generally
varied between 0 and 1, is the rate of choosing a value
from HM, while (1-HMCR) is the rate of randomly se-
lecting a value from the range of possible values, as
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shown in (39)

x′
i =

{
x′
i ∈ (x1

i x2
i . . . x

HMS
i ), rand ⩽ HMCR

x′
i ∈ xi, else,

(39)

where rand is a uniform random number between [0 1]
and xi = (Ubi − Lbi) ∗ rand + Lbi, where Lb&Ub are
the lower and upper bounds of the specific variable.

Pitch Adjustment (PAR) refers to the modification
of the value of the solution vector (or "harmony")
found by the Harmony Memory Consideration Rate
(HMCR) in order to find new optimal solutions, the
following expression is given:

x′
i =

{
x′
i ± rand ∗ bw, rand ⩽ HMCR

x′
i, else,

(40)

Where bw is the bandwidth. There are different for-
mulas for bw in this paper we have used the formula
proposed by Tuo et al [22].

4) Classification of solutions in the
harmony memory

The updating of the harmony memory in the HS algo-
rithm from which the ranking is performed may differ
between single-objective and multi-objective problems.
In the case of a single-objective problem, the ranking of
solutions can be performed using a single quality crite-
rion value, and in the case of a multi-objective problem,
the ranking of solutions can be performed using several
quality criterion values simultaneously. However, there
are a number of ranking strategies to drive the genera-
tion of higher quality Pareto fronts for multi-objective
problems [23]. In this work, to find Pareto optimal so-
lutions we used the ranking proposed by Deb et al [24].

5) Stopping criterion

The HS algorithm is stopped when the number of im-
provisations (NI) has been reached. Otherwise, sec-
tions 3.1.3 and 3.1.4 are repeated.

6) Best compromise solution

Obtaining the Pareto optimal set is a crucial first step,
but choosing the best solution among them is a com-
plex issue. Fortunately, many methods have been de-
veloped to identify the best compromise solutions, also
known as preferred solutions. Reference [25] provides
an overview of these methods.

In this paper, the fuzzy set method, the geometric
median, and the proposed method are used to deter-
mine the best compromise solution from the obtained

Pareto front.
a) Fuzzy membership approach
A fuzzy decision-making approach, inspired by refer-
ences [12-13], is employed to identify the best compro-
mise solution. The method consists of two main steps:
(1) implementing fuzzy-based mechanisms and (2) cal-
culating normalized membership values.

- Perform fuzzy-based mechanisms:

µo =


0, f0 ⩽ fmin

0

f0 − fmin
0

fmax
0 − fmin

0

, ⩽ fmin
0 < f0 < fmax

0

1, f0 ⩾ fmax
0

(41)

where µo is the membership function, f0 is the oth
objective function, and fmin

0 , fmax
0 are its minimum

and maximum values, respectively.

- Calculate the normalized membership value:

µk =

∑3
o=1 µ

k
o∑HMS

l=1

∑3
o=1 µ

l
o

. (42)

The solution having the maximum value of µk rep-
resents the best compromise solution.
b) The proposed method to solve the multi-
objective problem
The proposed method is a mixture of mathematical
methods to find a solution that can be considered as
the best among the solutions, because this method de-
pends on two parts:

The first part of this method is to divide the solu-
tion domains into several domains and make it a two-
dimensional matrix at a two-objective function and a
three-dimensional one in case of a three-objective func-
tion so that for each domain contains a certain number
of solutions that are found by Pareto fronts, Therefore,
there is a high probability that an optimal solution is
found in the domain containing the largest number of
solutions. The following equations model the first part
of the method:

P = max

 A1
1 · · · Ai

1
...

. . .
...

Aj
1 · · · Ai

j

 , (43)

P = max



Ak1

1 · · · · · · Aki

1

. . .
... . . .

...

A11

1 · · · · · · A1i

1

...
...

...
...

...
... Aki

j

... · · · Aki

j
... . . .

... . . .

A1i

j · · · · · · A1i

j


(44)
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where
Ai

j = ([f
(i−1)
i ; f

(i)
i ], [f

(j−1)
2 ; f

(j)
2 ]),

Ak
j = ([f

(i−1)
i ; f

(i)
i ], [f

(j−1)
2 ; f

(j)
2 ], [f

(k−1)
3 ; f

(k)
3 ])

C ∈ Ai
jorA

ki

j

(45)

and

Bo =
fmaxo

− fmino

Nd
,

f ((iorjork)−1)
o = fmina

+ ((iorjork)− 1) ∗Bo,

f (iorjork)
o = fmina + (iorjork) ∗Bo,

Nd = i = j = k,

(46)

Where (Ai
j) and (Aki

j ) is the cell of solutions in 2 di-
mensions and 3 dimensions respectively, (Bo) is the
distance between domains of the objective functions,
(i, k, j) and (Nd) are the numbers of the domains
and (o) is the objective functions respectively and
(fmax, fmin) are the maximum and minimum values of
the objective function existing in the harmonic mem-
ory with (C) the number of the solutions in each cell
(A) and (P ) is the cell that contains the most solutions.

After finding the domain with the most solutions,
a second part of the method comes where we use the
method of a point that is closer to other points, so
that a chosen point does not prefer one goal to an-
other, which is the same principle of non-dominance,
and from there we consider the obtained point as an
optimal solution. The expression of the second part of
the proposed method is;

G = min

 d1
...
dx

 ,

dx =

√∑
0

(fx
0 − f1

0 )
2
+ · · ·

√∑
0

(fx
0 − fy

0 )
2
,

(47)

Where (dx) is the sum of the distances between the
selected solution (x) and the other solutions (y) in cell
P and (G) is the optimum solution.

c) The geometric median The geometric me-
dian (or geometric center) is a measure of location for
a set of points in a multidimensional space. It repre-
sents the point that minimizes the sum of the squared
Euclidean distances to each of the points in the set, as
shown in Equation (47).

3.2. Solution process

The process of generating the optimal solution for opti-
mizing the design of a three-phase squirrel cage induc-
tion motor from the HS is shown in Figure 4. According

Fig. 4: Harmonic search algorithm used to optimize the design
problem of a single-objective or multi-objective induc-
tion motor.
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to Figure 4, the proposed approach to optimize the IM
problem is described in the following steps:

1. Entering the parameters of HS they are lb, ub and
choosing the size of the harmony memory HMS,
the rate of consideration of the harmony memory
HMCR and the rate of pitch adjustment PAR,
and the maximum number of improvisations NI.
In addition, the entry of IM data.

2. Randomly generated solution vectors are used
to calculate the main dimensions and quantities
(electrical, magnetic) of the stator and rotor, in
addition to calculating the selected constraints.

3. The examination if the constraints resulting from
the generated solution vector are in the range
given in section 2.4, if they are not in this range
go back to the previous step.

4. Initialization of the HM harmony memory by
storing the solution vectors that fulfill the con-
dition of the previous step and which is named
HM1.

5. Starting the improvisation.

6. Improving the new solution vector by HMCR and
PAR, as explained in section 3.1.3, the same steps
of step 2 are done, the solution vector are used to
calculate the main electrical and magnetic dimen-
sions and magnitudes (of the stator and rotor),
along with calculating the selected constraints.

7. In the same way as in step 3, the examination
of whether the constraints resulting from step 6
are within the specified range. If so, this solution
vector is stored by a new HM . Which is named
by HM2, if not returned in the previous step.

8. The two HM1 and HM2 are merged to give
a combined harmony memory between the two,
HM3 = HM1 ∪ HM2, then perform the sorting
and non-dominated ranking on the combined har-
mony memory to choose the best harmony mem-
ory among the combined solution vectors, for the
next improvisation. This step is well detailed and
explained in [26].

9. The stopping conditions are checked if the number
of improvisations has been reached at the maxi-
mum NI, go to the next step. Otherwise, return
to step 6 with HM which is found by step 8 be-
comes new HM1.

10. To find the best solution vector drawn by the
Pareto optimal set there are three possible cases:
a) If the o = 1 or the mono-objective function,
the best solution what is classified first in HM ,
and to pass it to the step 12. b) If the o = 2 or

bi-objective function, we used Eq (43) to extract
the cell Ai

j that contains the most solutions, go to
the next step. c) If the o = 3 or the tri-objective
function, Eq (44) was used to extract the cellAki

j

that contains the most solutions, go to the next
step.

11. To extract the best solution in b, c Eq (47), was
used which represents the closest point compared
to the other points.

12. Display the optimal values.

4. Results and discussion

The HS algorithm is used to test the robustness of the
proposed method for solving the multi-objective prob-
lem and obtaining the optimal results for IM . For this
purpose, five case studies are defined to optimize the
three objective functions, namely efficiency, total ac-
tive mass of the motor and rated torque. The case
studies are: 1st case, it’s the use of HS algorithm
to improve the three objectives individually, the other
cases focused on the methods that is solving the multi-
objective problem, namely the proposed method, fuzzy
membership approach employed in [12,13] and the Geo-
metric Median (GM) method,with the parameters us-
ing in the HS algorithm in the previous cases being
HMS= 200,NI = 500,HMCR =0.5,PAR =0.2 .
In addition, it should be noted that all the results ob-
tained by the algorithms are compared with the con-
ventional design results already discussed in Section
2. All simulations were implemented in MATLAB and
run on an Intel core-i5 1.80GHz personal computer.

Case 1: use the algorithm HS to optimize the
three objectives individually
Table 4 and Table 5 show the simulation results ob-
tained by the three objectives individually by the HS
algorithm and the initial engine for this case. As can be
seen in Figure 5 that the fitness value converged after
100 iterations to obtain the optimal design for each ob-
jective. In addition, the HS algorithm gives favorable
results in a faster time as shown in Table 5.

Case 2: Maximizing efficiency and rated
torque
In this case, two competing objectives, namely effi-
ciency and rated torque, were considered. This multi-
objective optimization problem was solved by the HS
algorithm which is given the Pareto optimal solution,
this solution is segmented by using the 1st part of the
proposed method to obtain two dimensional cells as
was presented in Figure 6(a). In addition, this figure
shows the cell that has the largest number of solutions
in the range of rated torque between 121.7 N.m and
122.2 N.m and efficiency between 0.9073 and 0.9115,
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(a) (b)

(c)

Fig. 5: Convergence of the objective function using harmony search algorithms (a) efficiency (b) rating torque (c) total active
mass.

Tab. 4: Design parameters for the perimeter case.

Parameter IM Mono-objective
W (HS) Tu(HS) η(HS)

ZQs 36 36 36 32
l(mm) 165 161 164.3 171.5
δ(mm) 0.243 0.211 0.47 0.251
Em(V ) 387.42 370.49 386.05 370.5

b1cs(mm) 4.23 4 4.4 5.5
h(mm) 24.72 16.01 16.01 21.06
b1r(mm) 5.8 5.3 4.5 6.3
h2r(mm) 16.78 10.02 10.03 13.69
B̂ys(T ) 1.97 2 1.94 1.43
B̂yr(T ) 1.8 1.9 1.45 1.63

which represents 30 solutions in total. Furthermore,
it should be noted that the smallest value in both do-
mains is better than the one found in the initial motor,
so this shows that all the solutions of this cell repre-
sent optimal solutions as was shown in Figure 6(b).
Figure 7 shows the Pareto front and the solutions by
the proposed method (MP) in red, the method by the
fuzzy membership approach in green and the Geomet-
ric Median (GM) method in black. This figure shows
that the proposed method gives better solution com-
pared to the other methods because it finds balanced
solution between the two objectives. Table 6 gives the
best solution vectors for maximum efficiency and maxi-
mum rated torque and Table 7 gives the optimal motor
performance for this case.

Case 3: Maximizing efficiency and minimiz-
ing total active mass
In this case, the total active mass is considered in-

stead of the rated torque. In the same way as in
the previous case, these two competing objective func-
tions were optimized simultaneously by the HS algo-
rithm. Figure 8(a) shows the cell with the highest
number of solutions in the range of total active mass
between −56.45Kg and −54.49Kg and efficiency be-
tween 0.9092 and 0.9108, which represents 36 solutions
in total. Furthermore, all solutions in this cell shown in
Figure 8(b), and by this figure, it can be seen that the
smallest value in both domains is higher than the one
found in the initial motor. Figure 9 like Figure 7 repre-
sented the Pareto front and the solutions by proposed
method (PM) in red, the method by fuzzy membership
approach in green and the method of Geometric Me-
dian (GM) in black This figure shows that the proposed
method gave the most balanced solution between the
two objectives compared to the other methods. Table 6
gives the best solution vectors for maximum efficiency
and minimum total active mass and Table 7 gives the
optimal engine performance for this case.

Case 4: Maximizing the rated torque and
minimizing the total active mass
In this case, two competing objectives, namely total
active mass and rated torque, were considered. Sim-
ilarly in case 3-4 this problem was optimized by the
HS algorithm. Figure 10(a) shows the cell that has the
highest number of solutions in the range of total ac-
tive mass between −48.24Kg and −48.05Kg and rated
torque between 124.27 N.m and 124.28 N.m, which
represents 34 solutions in total. Furthermore, all the
solutions in this cell shown in Figure 10(b), and Figure
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Tab. 5: Design parameters for the perimeter case.

Parameter Symbol IM Mono-objective
W (HS) Tu(HS) η(HS)

The outer diameter Dse(mm) 266.55 242.9 249.1 284.1
The inner diameter Ds(mm) 163.99 159.93 163.97 170.44

Flux density in the air gap Bσ(T ) 0.84 0.87 0.89 0.79
Flux density in the stator tooth Bds(T ) 1.61 1.64 1.76 1.84
Flux density in the rotor tooth Bdr(T ) 1.93 1.87 1.64 1.9

Total active mass Wa(Kg) 63.9 47.8 53.45 75.2
Stator current density Js(A/mm2) 3.65 6.648 6.173 3.001
Rotor current density Jr(A/mm2) 3.87 5.929 6.5 3.001

Power factor cos(ϕ) 0.861 0.86 0.86 0.891
Rated current Is(A) 19.84 20.41 20.48 18.85

Starting current Isd(A) 106.92 113.07 109.39 123.62
Starting torque Td(N.m) 98.77 162.54 168.91 99.2
Rating torque Tu(N.m) 121.07 123.56 124.28 119.91

Efficiency η% 90.57 88.162 87.866 92.096
Time per iteration(s) 1.15 1.58 0.83

(a) (b)

Fig. 6: Segmentation of the pareto front using the method proposed for case 2 (a) variation in pareto front solutions for rated
torque and efficiency (b) Magnification of the cell that contains a larger number of solutions with the optimal solution in
red.

Fig. 7: Pareto optimal solutions for rated torque and efficiency.

11 represented the Pareto front of all the solutions that
is obtained by the HS algorithm in blue with the solu-
tions by proposed method (PM) in red, the method by
fuzzy membership approach in green and the Geomet-
ric Median (GM) method in black. This figure shows
that all these solutions are superior to the one found in
the initial motor. In addition, this figure demonstrate
that the proposed method gave the most balanced solu-

tion between the two objectives compared to the other
methods. Table 6 gives the foremost solution vectors
for maximum useful torque and minimum total active
mass and Table 7 gives the optimal engine performance
for this case.

Case 5: Maximizing efficiency and rated
torque and minimizing total active mass
In this case, the three competing objectives were con-
sidered. These three objectives were optimized simul-
taneously by the HS algorithm that it gives the Pareto
optimal solution. This solution makes segment by us-
ing the 1st part of the proposed method to obtain cells
of three dimensions, each dimension is represented in
Figure 12(a). In addition, this figure shows the cell
that has the largest number of solutions in the range
of rated torque between 121.5 N.m and 121.8 N.m, ef-
ficiency between 0.906 and 0.909 and total active mass
between −60Kg and −58Kg, which represents 9 solu-
tions in total. Furthermore, it is worth noting that the
smallest value in the three domains is better than the
one found in the initial motor, so this shows that all the
solutions of this cell represent optimal solutions as was
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Tab. 6: Design parameters for the perimeter case.

Parameter IM HS-two-objectif HS-three-objectif
(Wa, Tu) (Wa, η) (Tu, η)

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

ZQs 36 36 36 36 36 36 36 36 36 36 36 36 36
l(mm) 165 161.8 161.1 162.2 162.5 161.9 161.9 165.6 164.6 161.5 163.2 162.7 162.9
δ(mm) 0.243 0.214 0.216 0.213 0.204 0.202 0.209 0.32 0.356 0.295 0.244 0.295 0.379
Em(V ) 387.42 370.55 370.8 371.23 370.54 370.54 370.57 371.07 370.53 372.89 378.67 370.53 376.35

b1cs(mm) 4.23 4 4.1 4.3 5.3 5.2 5.2 5.6 5.3 5 5.2 5.3 5.2
h(mm) 24.72 16.049 16.026 16.04 18.68 18.43 19.38 22.48 23.32 20.86 20.05 19.54 16.01
b1r(mm) 5.8 4.8 4.5 4.6 6 6 6 5 4.8 4.5 6 5.6 5
h2r(mm) 16.78 10.016 10.594 10.03 14.89 15.51 15.33 10.03 10.1 10.03 10.08 10.1 10.1
Bys(T ) 1.97 1.99 1.99 1.99 1.83 1.86 1.83 1.5 1.57 1.53 1.75 1.66 1.73
Byr(T ) 1.8 1.89 1.88 1.9 1.89 1.88 1.9 1.46 1.7 1.89 1.63 1.83 1.74

∗M1: the proposed method, M2: the Geometric Median, M3: fuzzy membership approach

(a) (b)

Fig. 8: Segmentation of the pareto front using the method proposed for case 3 (a) variation in pareto front solutions for total
active mass and efficiency (b) Magnification of the cell that contains a larger number of solutions with the optimal solution
in red.

Fig. 9: Pareto optimal solutions for total active mass and effi-
ciency.

shown in Figure 12(b). Figure 13 represents the Pareto
front and the solutions by the proposed method (PM)
in red, the method by fuzzy membership approach in
green and the method of Geometric Median (GM) in
black. This figure shows that the proposed method
gives better solution compared to the other methods
because it finds a balanced solution between the three
objectives. Table 6 gives the best solution vectors for
maximum efficiency and maximum useful torque and

Table 7 gives the optimal motor performance for this
case.

Table 8 shows the effectiveness of the methods used
and the rate of improvement compared to the initial
case. It is worth noting that the proposed method is
the most efficient in all cases for choosing an optimal
solution between the GM and Fuzzy methods. Indeed,
Table 8 shows that the Fuzzy method does not give
good results when there is strong competition between
objectives, where the increase is low, such as efficiency
and rated torque, because it is attracted to the objec-
tive with the highest value, which gives an inappro-
priate optimal solution for this method. As for the
GM method, it chooses an average value on the Pareto
front, which is not an optimal solution. Therefore, it
can be seen that when the increase is small, as in cases 2
and 5, it chooses the point that increases the efficiency
by less than 0.1%, which means that there is no im-
provement in efficiency. Unlike the proposed method,
which relies on the density of solutions, it gives an op-
timal solution that balances the objectives. Therefore,
it can be concluded that the proposed method is the
best for choosing points on the Pareto front compared
to the Fuzzy method used in [12,13] and GM. With an
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Tab. 7: Design performance for cases 2-5.

Parameter IM HS-two-objectif HS-three-objectif
(Wa, Tu) (Wa, η) (Tu, η)

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

The
outer

266.55 243.5 243.2 244.1 253.9 252.3 254.9 274.3 272.7 266.8 260.5 260.8 252.4

diameter
Dse(mm)
The in-
ner

163.99 160.74 160.05 161.13 161.4 160.8 160.82 164.82 163.9 160.6 162.21 161.8 162.3

diameter
Ds(mm)
Flux
density

0.84 0.88 0.88 0.87 0.78 0.78 0.78 0.77 0.79 0.82 0.8 0.79 0.82

in the air
gap
Bσ(T )
Flux
density

1.61 1.65 1.7 17 1.83 1.83 1.83 1.87 1.85 1.85 1.84 1.86 1.89

in the
stator
tooth
Bds(T )
Flux
density

1.93 1.73 1.64 1.63 1.9 1.9 1.9 1.53 1.52 1.54 1.91 1.79 1.66

in the ro-
tor
tooth
Bdr(T )
Total ac-
tive

63.9 48.16 48.21 48.68 55.41 54.73 56.14 68.5 66.37 61.16 59.36 58.62 53.06

mass
Wa(Kg)
Stator
current

3.65 6.638 6.424 6.257 4.175 4.301 4.05 3.14 3.15 3.79 3.794 3.928 5.07

density
Js(A/mm2)
Rotor
current

3.87 6.499 6.499 6.484 3.51 3.495 3.5 4.9 5.21 5.71 4.462 4.672 5.21

density
Jr(A/mm2)
Power 0.861 0.862 0.866 0.861 0.877 0.873 0.873 0.896 0.89 0.891 0.9 0.9 0.88
factor
cos(ϕ)
Rated 19.84 20.44 20.31 20.41 19.39 19.48 19.47 19 19.17 19.24 18.96 19.21 19.55
current
Is(A)
Starting 106.92 110.83 108.14 111.63 112.57 113.41 113.1 103.2 103.5 104.5 105.6 108.57 109.9
current
Isd(A)
Starting
torque

98.77 171 168.39 173.92 99.37 99.7 99.55 119.96 126.9 138.4 112.95 123.94 139.8

Td(N.m)
Rating
torque

121.07 124.28 124.28 124.36 120.72 120.7 120.6 121.97 122.21 122.66 121.6 121.6 122.6

Tu(N.m)
Efficiency 90.57 87.82 88.02 88.043 91.01 90.94 91.08 90.898 90.66 90.28 90.73 90.66 89.68
η%
Time per
itera-
tion(s)

1.54 1.31 1.32 1.16

†M1: the proposed method, M2: the Geometric Median, M3: fuzzy membership approach.

improvement compared to the initial case in the case
of three-objective optimization of 0.4377% for rated
torque, 0.1766% for efficiency and 7.1048% for active
mass.

5. Conclusion

This paper presents the multi-objective optimization
which uses the harmony search algorithm to deal with
the design of induction motors. Firstly, the three ob-
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Tab. 8: The optimization rate for each method compared to the initial case in cases 2-5.

Method Case 2 Case 3 Case 4 Case 5
η% Tu% η% Wa% Wa% Tu% η% Tu% Wa%

The proposed method 0.3621 0.7433 0.4858 13.286 24.632 2.6513 0.1766 0.4377 7.1048
The GeometricMedian 0.0993 0.9416 0.4085 14.35 24.553 2.6513 0.0993 0.4377 8.2629

Fuzzy membership approach -0.3201 1.3132 0.5631 12.143 23.818 2.7174 -0.9826 1.2637 16.964

(a) (b)

Fig. 10: Segmentation of the pareto front using the method proposed for case 4 (a) variation in pareto front solutions for total
active mass and rated torque (b) Magnification of the cell that contains a larger number of solutions with the optimal
solution in red.

Fig. 11: Pareto optimal solutions for total active mass and
rated torque.

jective functions that are composed of efficiency, rated
torque and total active mass were taken separately as
objective function in single objective optimization by
HS algorithm. The results obtained show that the HS
algorithm used gives good results in a shorter time with
fewer iterations. Then, the objective functions were
solved as a multi-objective problem by the MOHS al-
gorithm. To identify the best compromise solution by
Pareto optimal solutions fuzzy membership approach
method, Geometric Median (GM) method and pro-
posed method were used. According to the simula-
tion results, the proposed method is able to give the
best and most balanced solution between the objective
functions in the Pareto optimal solutions compared to
the other methods for the IM problem with different
objectives.
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